3D打印技术的优缺点:3D打印HEA高熵合金:微观结构和性能综述(一)(2)
时间:2022-07-12 10:43 来源:3D科学谷 作者:admin 点击:次
高熵合金在海洋工程、核工业、发动机工业、硬质刀具工业都有着广泛应用空间 根据《国家着手制定的增材制造高熵合金粉检测指标》一文,采用3D打印-增材制造技术制备的高熵合金零部件,其晶粒细小、组织成分均匀,可以有效解决传统制备高熵合金材料结晶组织粗大,内部易形成疏松和成分偏析的弊端,还可以大幅加快新品开发速度和响应时间,促进高熵合金在各个领域广泛应用。 目前有几种3D打印-增材制造技术可用于金属材料的制造和生产,主要包括选区激光熔融(SLM)、激光熔覆(LMD)、电子束熔融(EBM)和电弧增材制造(WAAM)的方法。 选区激光熔融(SLM或LPBF) ,是目前应用最广泛的基于粉末床的增材制造技术。在选区激光熔融过程中,激光束用于将金属粉末熔化并融合在一起。一层薄薄的粉末均匀地分布在基材或先前沉积的层上,随后激光束根据扫描路径熔化并融合粉末颗粒。 对于 SLM 技术,必须仔细调整几个工艺参数,主要是激光功率、激光扫描速度、层厚、孵化距离和扫描策略,以制造具有优化微观结构和性能的无缺陷零件。根据所用金属粉末的反应性,SLM 工艺通常在充满惰性气氛(如氩气或氮气)的封闭室中进行。此外,构建室还受到过压条件的影响,这两者都有助于最大限度地减少制造过程中的氧气污染。目前在 SLM 过程中可以实现从 104 到 106 K·s-1 的高冷却速率 ,是市场上研究开发HEA高熵合金普遍使用的一项3D打印技术。 与 SLM 技术相比,LMD激光熔覆3D打印技术提供了更高的沉积速率,并允许3D打印大尺寸的大块样品。需要注意的一个问题是,由于在此过程中某些元素的蒸发,生成的化学成分可能会偏离起始粉末成分。LMD激光熔覆3D打印技术方面,国际上InssTek开发了MX-Lab可用于设计HEA高熵合金,通过MX-Lab开发,易于更换元素,可超过 5 个元素,易于改变比例,具有准确的送料器。 EBM 工艺在高真空气氛中进行,通常可以避免制造部件的氧化。在 EBM 过程中,需要预热粉末床,以防止由残余热应力引起的构建部件的结构变形,这将影响冷却速度和制造部件的最终微观结构。此外,在构建部件的尺寸和点阵晶格结构中胞元的最小尺寸方面存在限制。 与上述基于金属粉末的增材制造技术本质上不同,WAAM 采用电弧作为热源,金属填充丝作为原料,被认为是一种具有成本效益的技术。在 HEA材料的 WAAM加工过程中,考虑到所需的成分,通常使用市售金属线的组合电缆作为原材料,可以将其完全熔化,以避免在应用基于粉末的 AM 方法的情况下由于未熔合的粉末而导致材料损失。此外,WAAM还具有沉积速率高、设备和材料成本低的优点,使其适用于大型金属部件的生产。 因此,最近WAAM 已成为一种有前途的 HEA 增材制造方法。然而,使用 WAAM 制造金属部件也会导致诸如亚光学表面质量差、尺寸精度不足以及由于剧烈的熔池相互作用而导致的偶尔低密度等缺点。此外,WAAM 相对较慢的冷却速度和较大的热源点可能会导致较大的残余应力,从而致使制造零件的变形。 上述增材制造过程中的快速凝固可以限制成分偏析和脆性金属间化合物在构建部件中的形成,通过晶粒细化有助于强化效果,值得注意的是,以前的一些 AM-增材制造的研究主要集中在 HEA 涂层,在这里,重点介绍了由 AM-增材制造技术制造的块状 HEA 的微观结构和特性。 更多深入分析3D打印HEA材料的分析,请持续关注后续内容,下期将聚焦介绍3D打印HEA材料微观结构层面上密度、残余应力、晶粒结构情况。 (责任编辑:admin) |
- 上一篇:增材制造金属的断裂和疲劳
- 下一篇:合金成分对镍基高温合金增材可制造性的影响