增材制造在增强相变材料导热性能中的应用(2)
时间:2022-07-29 14:10 来源:安世亚太 作者:admin 点击:次
增材制造—TPMS胞元结构 由于增材制造技术的出现,周期性胞元结构,特别是三周期极小曲面(TPMS)引起了广泛的研究兴趣。TPMS本质上是所有点的平均曲率为零的最小曲面。TPMS结构可以用数学方法建模,并可以在三个方向上重复建模。这种模式允许TPMS胞元在三个相互垂直的方向上生长,形成TPMS胞元的3D阵列。这里值得一提的是,术语“最小表面”并不是指给定单元尺寸的结构的总表面积最小,事实上,TPMS结构的表面积显著高于Kelvin单元。这一更高的表面积有助于提高TESs系统的PCM充放热性能。 一些经典的TPMS结构是由Schwarz(Schwarz Primitive和Schwarz Diamond)最先提出的。后来,Schoen提出了其他几种TPMS结构,最著名的是Schoen Gyroid和Schoen I-graph and wrapped package-graph (IWP)。与传统的基于支撑结构的拓扑结构相比,TPMS结构表现出了优越的性能。TPMS结构的力学性能优于所测试的所有结构。TPMS已被用于支架和组织工程应用。 TPMS胞元结构对,相变材料导热性能增强作用 评价导热性能的一个指标是,相同加热时间内,PCM液相分数大小。液相分数取值范围为0~1,0为PCM完全固态,1为PCM完全液态/熔融态。对于所有的金属泡沫结构,熔化过程都得到了增强。热量从模型底部迅速传递,导致在PCM—金属泡沫结构界面熔化。此外,翅片也有助于熔化过程,从翅片-PCM界面形成的熔融PCM层可以看出。 评价导热性能的一个指标是平均HTC,对比热传导和自然对流两种情况下四类泡沫材料的平均HTC值。在纯热传导情况下,TPMS金属泡沫结构的性能明显更好,IWP的平均HTC比Kelvin单元高出50%,其次是Gyroid(46%)和Primitive(32%)。在自然对流条件下,TPMS金属泡沫结构仍表现出优于Kelvin单元的传热性能。 由增材制造方法生成的TPMS金属泡沫结构和传统金属泡沫结构相比,针对FMF-PCM系统,以PCM熔化时间和整个熔化过程中平均HTC的值为判断标准,发现增材制造方法生成TPMS金属泡沫结构在热传导(无浮力)以及基于自然对流的模拟方面优于传统金属泡沫结构。 增材制造生成的TPMS金属结构可以很好的改善PCM材料导热系数低的不足,在航空航天领域,TESs系统和TMSs系统可能具有非常好的应用前景的。 文章中图片来源:《Heat transfer performance of a finned metal foam-phase change material (FMF-PCM) system incorporating triply periodic minimal surfaces (TPMS)》 作者 李权树,工学硕士,安世亚太DfAM赋能业务部流体仿真工程师。擅长一维流体系统、三维热流体仿真。目前从事换热器热流体仿真设计工作。 (责任编辑:admin) |