3D打印网-中国3D打印门户移动版

主页 > 新闻频道 > 新闻人物 >

南科大《CoCo》综述:连续纤维增强复合材料增材制造中的设计机遇和创新应用(2)


3.2.2.工艺参数优化
工艺参数与打印件性能之间的映射关系是进行工艺参数优化的基础。表2总结了文献中已经研究过的工艺-性能关系,包括大多数力学性能,如拉伸、弯曲、剪切和压缩性能与工艺参数,如喷嘴温度、层高、打印速度和打印间距等。然而,CFRP-AM中独特的工艺参数,如纤维张力和纤维进给速率,尚未得到深入的研究。

表 2 关于CFRP复合材料工艺-性能关系的文献列表,表中不同颜色的含义:蓝色-负相关,黄色-正相关,绿色-目前不可预测,灰色-尚未研究

3.3.结构设计
3.3.1.点阵结构设计
CFRP-AM点阵结构可以显著提高打印件的机械强度和抗疲劳性能。针对CFRP-AM点阵结构的设计变量可归纳为三组:单胞形状、空间排列方式以及单胞几何参数。如图11所示,单胞形状主要包括矩形、圆形、蜂窝、菱形、梯形、波纹状、箭头状和金字塔状等形式。空间排列方式包括周期排列、功能梯度、混杂排列等。几何参数主要包括单胞长度、壁厚和倾斜角度等。CFRP-AM打印件的密度/相对密度、等效泊松比、弹性模量、比模量、拉伸强度、压缩强度、能量吸收、比能量吸收、形状恢复率和形状恢复时间等性能指标通常作为点阵结构设计的优化目标。

图 11. 不同形状的CFRP点阵结构。(a) 矩形、圆形、蜂窝、菱形、梯形;(b) 箭头形;(c) 波纹形;(d) 金字塔形

3.3.2.拓扑优化设计
基于CFRP-AM的拓扑优化主要挑战是结构设计和工艺规划之间的耦合。设计包括两个任务:1)材料分配;2)工艺规划。所面临的主要研究问题包括纤维连续性、尺度分离、设计自由度降低以及复杂形状复合材料的纤维取向优化等。目前,基于CFRP-AM的拓扑优化可分为两种:先结构拓扑后工艺规划的顺序优化(图12(b))和结构-工艺协同优化。

图 12. (a) 优化的支架模型及其平滑变化的材料方向;(b) 先结构拓扑后工艺优化

4.CFRP-AM的创新应用
4.1.智能可变体
CFRP-AM中有多种实现打印件受激励后改变形状的机制。驱动其变形的外部刺激可以是直接的环境温度改变或者是对连续纤维通电加热进而产生温度变化。对纤维轨迹、纤维体积分数等工艺参数以及选择性区域加热进行调控进而可以实现CFRP-AM复合材料的智能可编程控制。
图 13.(a) 4D打印连续碳纤维增强形状记忆聚合物基底复合材料的焦耳热致形状恢复;(b)不同实验设置的可展开表面;(c)不同纤维含量的Kevlar-SMP复合材料的形状恢复;(d)具有不同电压输入配置的CFRP复合材料的变形行为

4.2.智能传感
利用连续纤维的电-机械性能可开发具有综合传感能力的复合材料,如金属纤维应变传感器、碳纤维二维变形场智能传感网格以及碳纤维自我监测传感器,如图14所示。
图 14. (a) 印刷镍铬丝增强PLA复合材料;(b) 二维变形场智能传感网格;(c) 嵌入碳纤维的3D打印人工手

4.3.能量存储
增材制造允许制造具有定制形式的结构电池复合材料,同时实现无质量储能。图15所示为基于CFRP-AM技术的3D打印复合材料电池。
图 15. 由紫外线辅助共挤出制造(左)和和通过熔融沉积模型制造(右)的复合材料结构电池

4.4.其他应用
CFRP-AM的另一应用是通过复杂的结构设计,以实现具有定制化性能超材料的开发,图16为基于CFRP-AM技术的具有声学、负泊松比特性、电磁波吸收和屏蔽方面性能的超材料应用。

图 16. CFRP超材料: (a) 具有不同配置和制造样品的局部共振声学超材料;(b) 具有可控屏蔽效果的CF复合材料外壳;(c) 用于电磁波吸收和屏蔽的连续碳纤维增强复合材料结构;(d) 具有负泊松比的连续碳纤维增强聚酰胺复合超材料

总结
该文主要结论可归纳为以下几点:
1.CFRP-AM 的设计包含多个设计域,设计域具有高维度和强耦合等特征。
2.不同增材制造技术已被用于CFRP复合材料的制造。然而,增材制造的CFRP复合材料力学性能仍远低于通过传统方法制造获得的构件,力学性能需要进一步提高才能应用于工业。
3.目前对CFRP-AM材料设计研究主要通过结合不同的传统热塑性或热固性基体材料来提高机械性能。然而,关于基体和增强材料的化学或物理改性和预处理的研究仍然很少。此外,由于对智能器件需求的不断增长,因此非常需要通过CFRP-AM赋予零件包含热、电、磁等在内的多种功能。
4.CFRP-AM的纤维铺排轨迹规划极大地影响了制成件力学性能。纤维方向和体积分数的局部调控为优化CFRP复合材料性能创造了新的可能性。空间连续路径规划策略以及性能驱动的纤维布置需要进一步研究。
5.基于实验的方法已经对工艺参数对CFRP打印件的性能的影响进行了广泛的研究。然而,在前期研究中获得的大部分工艺-性能关系尚未用于设计优化。未来的研究应将重点放在将这些映射关系纳入产品的优化设计中。
6.点阵结构和拓扑优化为设计具有可调机械性能同时保持轻量化的3D打印CFRP复合结构提供了巨大的潜力。然而,复杂形状复合材料的纤维不连续性、尺度分离和纤维取向优化等挑战需要进一步研究。
7.CFRP-AM具有一体化成形多功能复材的巨大潜力,可以将执行器、传感器和能量存储模块等元件一体化集成到同一设备中,从而降低成本并提供更好的结构完整性,为智能设备的开发铺平了道路。

原始文献:
Guang Liu, Yi Xiong, Limin Zhou, Additive manufacturing of continuous fiber reinforced polymer composites: Design opportunities and novel applications, Composites Communications, Volume 27, 2021, 100907, ISSN 2452-2139, https://doi.org/10.1016/j.coco.2021.100907. (责任编辑:admin)