详解5种金属3D打印技术(2)
时间:2017-02-14 08:22 来源:南极熊 作者:中国3D打印网 点击:次
直接金属激光成形(DMLS) SLS制造金属零部件,通常有两种方法,其一为间接法,即聚合物覆膜金属粉末的SLS;其二为直接法,即直接金属粉末激光烧结(DirectMetalLaserSintering, DMLS)。自从1991年金属粉末直接激光烧结研究在Leuvne的Chatofci大学开展以来,利用SLS工艺直接烧结金属粉末成形三维零部件是快速原型制造的最终目标之一。与间接SLS技术相比,DMLS工艺最主要的优点是取消了昂贵且费时的预处理和后处理工艺步骤。
直接金属粉末激光烧结(DMLS)的特点 DMLS技术作为SLS技术的一个分支,原理基本相同。但DMLS技术精确成形形状复杂的金属零部件有较大难度,归根结底,主要是由于金属粉末在DMLS中的“球化”效应和烧结变形,球化现象,是为使熔化的金属液表面与周边介质表面构成的体系具有最小自由能,在液态金属与周边介质的界面张力作用下,金属液表面形状向球形表面转变的一种现象.球化会使金属粉末熔化后无法凝固形成连续平滑的熔池,因而形成的零件疏松多孔,致使成型失败,由于单组元金属粉末在液相烧结阶段的粘度相对较高,故“球化”效应尤为严重,且球形直径往往大于粉末颗粒直径,这会导致大量孔隙存在于烧结件中,因此,单组元金属粉末的DMLS具有明显的工艺缺陷,往往需要后续处理,不是真正意义上的“直接烧结”。 为克服单组元金属粉末DMLS中的“球化”现象,以及由此造成的烧结变形、密度疏松等工艺缺陷,目前一般可以通过使用熔点不同的多组元金属粉末或使用预合金粉末来实现。多组分金属粉末体系一般由高熔点金属、低熔点金属及某些添加元素混合而成,其中高熔点金属粉末作为骨架金属,能在 DMLS 中保留其固相核心;低熔点金属粉末作为粘结金属,在 DMLS 中熔化形成液相,生成的液相包覆、润湿和粘结固相金属颗粒,以此实现烧结致密化。 直接金属粉末激光烧结(DMLS)的问题 作为SLS技术的一个重要分支的DMLS技术尚处在不断发展和完善的过程之中,其烧结的物理过程及烧结致密化机理仍不明了,不同金属粉末体系的激光烧结工艺参数仍需摸索,专用粉末的研制与开发还有待突破。因此,建立金属粉末直接激光烧结过程的数学、物理模型,定量研究DMLS烧结致密化过程中的烧结行为和组织结构变化,成为粉末冶金科学与工程研究中的重要内容之一。DMLS中,金属粉末的物性对于烧结质量有着及其重要的影响,相同的工艺参数条件下,不同的粉末体系的烧结效果往往有很大的区别。把握粉末体系的物性,为其选择最优化的工艺参数,是DMLS的最基本、最重要的要求。大量研究表明,影响DMLS质量的三个关键物性参数主要为:烧结特性、摊铺特性和稳定性。
(责任编辑:admin) |