近年来随着国家航空航天领域的迅速发展,高速、超声速等飞行器的电子设备热防护问题日益凸显。由于飞行器自身限制,地面环境中的常规散热方式如自然对流、强制风冷/水冷等无法同样适用。
这主要是由于此类飞行器的工作环境在超高空、太空等真空、近真空或高速气动的高温环境中,飞行器严苛的体积重量要求也限制了其热控设备的选择空间,此外此类热载环境多是瞬时高峰值热载荷或者循环波动热载荷等不规律热载。目前为了安全起见常采用增大热防护设备热容、表面烧蚀等方法进行热防护,显而易见的是这样会大大增加热防护设备重量,增加飞行器成本及损害一定的安全稳定性。因此小型化、轻量化、稳定性高的热防护方案是目前急需解决的关键问题。
相变材料,尤其是石蜡,由于其高熔融潜热和热循环稳定性以及无毒等热物性,在热存储系统(TESs)系统和热管理系统(TMSs)中得到了广泛的应用。但是相变材料的导热系数很低,与常见的金属材料相比少2-3个数量级。这就造成了当使用纯相变材料进行温控或者储能时,加热面处的温度会使得其附近的相变材料迅速融化,但是其较低的导热系数会导致远离加热面处的相变材料融化较慢甚至仍保持固体状态,相变材料内部会存在较大的温度梯度,严重限制了相变材料(PCM)的性能发挥,甚至可以造成设备失效或毁坏。因此如何提高相变材料的等效导热系数成为急需解决的关键问题。
金属泡沫材料已广泛应用于相变材料导热系数的提高,在热存储系统(TESs)和热管理系统(TMSs)中都有应用。传统的泡沫金属结构采用Kelvin单元来替代,其几何和宏观参数,如孔隙率、孔径大小和比表面积等对泡沫金属-PCM复合材料性能的影响已被广泛研究。
随着增材制造技术的出现,为传统技术难以制造的复杂结构带来了制造解决方案,从而为TESs系统和TMSs系统中应用三重周期极小曲面结构的使用打开了大门。三种典型的三重周期性最小表面为:Gyroid,IWP和Primitive泡沫材料,将它们应用于翅片金属泡沫-PCM(FMF-PCM)系统中能够极大提升传热性能。因此,基于TPMS的金属泡沫材料在TESs系统和TMSs中具有很大的应用前景。
金属泡沫结构
泡沫金属结构形式一般采用Kelvin单元来代替,理想的金属泡沫单元使用十四面体单元。Kelvin单元是一种规则的几何结构,它由6个正方形和8个六边形面组成,它以最小的表面将空间分割成等体积单元。对泡沫金属的宏观参数和几何参数已经进行了大量的研究工作,如孔隙率、孔隙大小、孔隙度梯度、比表面积密度,以及支柱形状、各向异性等形态学特征。在已有的研究中,泡沫金属的基本组成部分(即Kelvin单元本身)始终保持不变。一个明显的原因是,通过传统制造技术生产复杂架构的实际可行性不高,无法制造高度复杂的几何图形。
FMF-PCM结构及增材制造应用
除了PCM浸渍金属泡沫中的方法可以增强PCM的传热特性外,一种被称为“翅片金属泡沫”(FMF)的改进结构也可以增强导热性能,因为与相对简单的金属泡沫PCM(MF-PCM)和翅片PCM(F-PCM)相比,FMF在TESs系统和TMSs中具有更好的传热性能。在MF-PCM结构中,PCM浸渍在金属泡沫中,没有任何翅片。在F-PCM中,不使用金属泡沫,PCM填充在翅片之间。FMF-PCM的主要原理是将前两种结构结合在一起,将金属泡沫夹在翅片之间,然后将PCM浸渍在泡沫金属材料中。
等温条件下通过数值计算发现FMF-PCM、FPCM和MF-PCM三种构型。在整个熔化过程中,与F-PCM配置相比,FMF-PCM配置的平均传热系数(HTC)增加了24%,与MF-PCM配置相比增加了约7倍。
近年来随着增材制造技术的进步,使复杂结构的打印成为可能。在金属3D打印领域,粉末层熔化技术,如激光烧结、激光熔化和电子束熔化是最常用的技术。3D打印不仅可以制造复杂的几何图形,还可以减小材料浪费。此外,所生产的零件的尺寸涵盖了从打印大型物体到打印纳米尺度物体的整个尺度范围。因此,由于制造技术的转变,制造复杂拓扑结构的物理障碍已经完全消除,允许完全自由地设计和建造任何结构。因此,之前无法实现加工的金属泡沫结构重新受到重视,如三重周期性最小表面。
对于FMF-PCM,使用时有一个很难处理的问题,即需要以消除翅片和FMF金属泡沫之间的接触热阻。增材制造可以完美的解决该问题,因为整个FMF模块可以作为一个单一的部分打印出来。
增材制造—TPMS胞元结构
由于增材制造技术的出现,周期性胞元结构,特别是三重周期性最小表面(TPMS)引起了广泛的研究兴趣。TPMS本质上是所有点的平均曲率为零的最小曲面。TPMS结构可以用数学方法建模,并可以在三个方向上重复建模。这种模式允许TPMS胞元在三个相互垂直的方向上生长,形成TPMS胞元的3D阵列。这里值得一提的是,术语“最小表面”并不是指给定单元尺寸的结构的总表面积最小,事实上,TPMS结构的表面积显著高于Kelvin单元。这一更高的表面积有助于提高TESs系统的PCM充放热性能。
© 3D科学谷白皮书
一些经典的TPMS结构是由Schwarz(Schwarz Primitive和Schwarz Diamond)最先提出的。后来,Schoen提出了其他几种TPMS结构,最著名的是Schoen Gyroid和Schoen I-graph and wrapped package-graph (IWP)。与传统的基于支撑结构的拓扑结构相比,TPMS结构表现出了优越的性能。TPMS结构的力学性能优于所测试的所有结构。TPMS已被用于支架和组织工程应用。
(责任编辑:admin) |