锂的元素分布不能由EDS或WDS直接检测。因此,TEM观察在锂基沉淀表征中起着重要作用,涉及沉淀结构和化学成分。在Al-Cu-Li合金中,在直接凝固合金和峰值时效或过时效合金中,T2相倾向于在HAGBs处形成,其形成能力主要取决于合金成分和冷却速度。在目前的情况下,沿晶区发生的Cu和Li的严重偏析是形成二十面体相的成分范围的原因。LPBF过程中的快速凝固特性为沿GBs形成粗二十面体相提供了驱动力。同时,T 2相的形成抑制了其他相的形成,例如θ相。除了作为凝固反应产物的T2相外,晶间区周围溶质的偏析也有助于快速凝固期间GBs处的低熔点Al-Cu共晶。
图5 准晶T2相的相识别:(a)网络分布中粗GB相的BSE显微照片;(b)EDS分析结果;(c)准晶相的TEM形态;(d)具有典型五重对称性的SAD图案;(e)HRTEM图像
图6 使用TEM进行元素分布和相位识别:(a)TEM亮场显微照片;(b-f)Al、Cu、Si、Ag和Mg的EDS映射;(g)a区放大图像;(h、i)区域a和b的相应SAD图案的放大图像;(j)δ´/β´的形态,(k)δ´/β´的相应SAD图案;(l)沿<100>带轴的标准衍射图案
图7 LPBF处理样品的热裂纹行为:(a)整个试样的典型XRM切片;(b)孔隙和裂纹的宏观分布;(c,d)网状大互连裂纹的3D图像;(e,f)沿GBs的典型初始晶间表面断裂;(g)晶粒内的条纹状界面微裂纹
图8 EBSD结果分析LPBF处理的铝锂合金纵截面上的GBs:(a)IPF图像;(b)HAGBs和LAGBs的GB分布图;(c)显示应变集中的KAM图;(d)晶粒尺寸分布;(e)沿裂纹扩展路径的错向角;(f)错向角分布
图9 在P=200 W和v=100 mm/s时,LPBF中温度场和应力场的模拟结果:(a)温度场;(b)实验验证;(c)计算P1处的X分量热应力;(d)X分量残余应力分布
4
热裂纹主要沿晶间区域及其周围产生,在之前的工作中,已经发现在合金中观察到较为严重失效,其中大部分GBs被薄膜状共晶相覆盖。因此,沿晶界交替出现的粗T2相和薄膜状Al-Cu共晶相增加了制备的Al-Li合金样品的晶间HCS。当裂纹在应力集中的驱动下沿GB区萌生时,相互连接的析出物将通过晶间裂纹溶解。最终,可能会出现更复杂、更规则的晶间裂纹路径,并沿建筑方向延伸,表明与晶粒内部的情况相比,裂纹扩展阻力显著降低。
图10 结晶和元素互扩散过程的示意图:(a)α-Al液相形核;(b)T相形核;(c)MgAgCuSi团簇、Ω相、θ′-相枝晶内形核和T2相晶间形核;(d)离异共晶形成和晶间裂纹萌生;(e)-(h)强调涉及最复杂情况与时间的枝晶内沉淀演变顺序
图11 裂纹萌生和扩展过程示意图:(a)拉伸应力作用下撕裂液膜导致的裂纹萌生;(b)裂纹沿GBs扩展;(c)裂纹扩展至FGZ或沿枝晶生长方向连续裂纹扩展时的裂纹止裂;(d)倾向于会聚在一起的裂纹,导致具有3D网状结构的大型互联裂纹
知之既深,行之则远。基于全球范围内精湛的制造业专家智囊网络,3D科学谷为业界提供全球视角的增材与智能制造深度观察。有关增材制造领域的更多分析,请关注3D科学谷发布的白皮书系列。
(责任编辑:admin) |