3D打印网-中国3D打印门户移动版

主页 > 3D打印新闻 > 深度解读 >

近期全球3D打印产业四大惊人成果(2)


哈佛科学家成功3D打印“生物机器人”

    在当前的3D打印领域,3D生物打印器官可以被称为圣杯之一,世界各地的众多研究团队都正在努力实现3D打印可植入的组织。日前,哈佛大学的研究人员朝着这个方向完成了重要的一步。在一次探索心脏组织工程的尝试中,由该校教授Kit Kevin Parker带领的一个团队打造出了一条“活”的微型魔鬼鱼(又称黄貂鱼、刺鳐)。据悉这个神奇的生物机器人是用大鼠心脏肌肉组织和3D打印的黄建软骨组成的,它能够对光的脉动产生反应。

当然,在这里“活”一定是打引号的,因为这条硬币大小的魔鬼鱼并不是真正活的。尽管这些组织细胞是活的,而且它们也能够对光线产生反应,以方便移动,但该生物实际上并不能进行自主决策、繁殖等。尽管如此,这也可以称得上是颠覆性的突破,并足以推动机器人、人工智能、生物工程和3D生物打印领域更多的创新。对大多数颠覆性突破一样,它也开始于一个简单的想法。两年前,Parker教授带着年轻的女儿去波士顿的新英格兰水族馆,在那里他看到自己的女儿完全沉迷于魔鬼鱼。教授看着展览,开始思考如何开发能够以类似蜿蜒模式移动的肌肉。“突然就像一道闪电击中了我,它看起来很像心脏的肌肉层,这使我找到了用肌肉组织打造该系统的方法。”他回忆道。

左侧是人造的魔鬼鱼,右侧是真正的魔鬼鱼

这个不寻常的概念被Wyss研究员Sung-Jin Park接受,并迅速成为哈佛大学应用科学与工程学院疾病生物物理学组研究人员的一个新的研究项目,牵涉其中的还有来自伊利诺伊大学、密歇根大学和斯坦福大学医学中心的研究人员。它是如何工作的?简单地说,这条小小的魔鬼鱼结合工程、细胞培养、遗传学和生物力学等领域的最新科技进展于一体,其重量只有10克,其骨架是用非常薄的黄金3D打印而成的,上面还铺了两层薄薄的弹性聚合物。该聚合物上面覆盖了大约20万个活的心肌细胞,这些细胞取自大鼠的心肌。

为了控制细胞,团队使用了光遗传学技术,这是一种神经科学研究的常用方法,即用光来打开和关闭神经。神经元或心脏肌肉并不会自动对光产生反应,但通过光遗传学,可以通过一段DNA对细胞进行升级。这段特殊的DNA编码代表了一种可以对光产生反应的蛋白,从而使细胞呈现光敏感性。如今,当光线爆发时,经过基因修改的细胞收缩,然后推动鳍向下滑动,当细胞放松时,该人造魔鬼鱼的骨架会将鳍收回来。结果就是这样一个根据光线波动来游泳的魔鬼鱼机器人。Parker教授指出,在这个设计中,细胞起到了传感器和致动器的作用,这既有好处也有缺点:虽然活的肌肉细胞比合成的致动器更节能,但它们也很容易受伤害。为了保持其活力,它们需要浸泡在带糖和盐的温暖溶液里。

在每个鳍上加上一个光源,使研究人员能够分别刺激右侧或左侧的鳍,并操纵这个生物机器人向任意方向移动。不同频率的光可以控制鳍的速度,进而改变魔鬼鱼的速度。在这个研究中,Park将其对于水生生物的兴趣与他想要了解心脏及其解剖结构的各个方面是如何帮助血液在体内移动的需要结合了起来。泵送和液体运动是海洋里的生命形式都非常擅长的东西,他说。尽管可能还要好几年Parker才能够打造出真正的人造心脏,不过这条几乎活生生的3D打印鳐鱼肯定是其朝着正确方向迈出的非常重要一步。

人类功能性肝细胞组织3D打印“大获成功”

最近,生物打印领域不断的“透露”出好消息:从零重力3D打印心脏结构到基于细胞的生物打印机的成功测试,以及纳米纤维生物打印技术在面部整容领域的成功应用等。这些实例都充分证明了一个事实:生物3D打印技术能够为人类创造不可估量的价值!近日,由罗氏制药和Organovo公司最近合作进行的一个内部研究显示:3D生物打印的人类肝脏组织在人类双细胞以及多细胞器官领域拥有广泛的潜力。因此,利用3D生物打印技术创造的人类混合型胚胎干细胞能够真正减少人类对定向药物的异常反应。

据了解,在生物学研究领域中,人们过去都是将一种或多种细胞局限于一个狭小的二维平面环境中进行培养。虽然这种方法最终也能够令细胞形成组织结构,但这种结构最终达到的厚度也只能是几个细胞直径那么多。而如今,生物3D打印技术改变了这一切,它令传统的细胞培养技术更上一层楼。现在,生物学研究者们可以在三维的环境当中进行细胞的定向培育,而且可以达到想要的各种厚度。

在罗氏制药和Organovo公司进行的这个实验中,3D生物打印技术为细胞组织的生长提供了一个完美的三维环境,令其能够在各个方向上进行定向分裂,为之后的生物组织和细胞化学数据评估奠定了基础。换言之,利用各类人体肝细胞在三维环境中进行体外实验,将有助于科学家们更加方便的去调查并分析人类的组织病理学和生物化学数据,为进一步深入研究人体组织创造条件,而且这比真正进行复杂的人体实验要容易得多,成本也大幅降低。

在该实验中,这些3D打印的肝细胞组织当中主要含有肝实质细胞,肝脏星形细胞以及人体脐静脉内皮细胞等各种类型的肝细胞。由于Organovo公司将它们长期放在低温条件下冷冻保存,因此它们一直保持着细胞活性。而另一些材料就是高浓度的生物油墨,成分主要是100%凝胶质的组织实质细胞。肝组织的形成过程主要是通过3D打印来实现,研究人员们首先将活性细胞与生物油墨的混合材料输入生物打印机,然后在三维的培养皿环境下进行精准的打印塑形,最终形成他们想要的立体组织结构。在这个案例中,整个肝组织并非完全复制了人体天然的肝小叶结构。而且由于细胞材料的多样性,最终形成的3D肝脏组织结构能够在肝脏特殊的功能性用途中充当关键角色。

通过这个实验,不仅证明了生物打印的组织在成型的过程中能够充当组织实质细胞或非组织实质细胞两种不同的功能性角色,而且这些形成的组织通过时间的推移将会逐渐凝结并塑形,最终形成稳定,高细胞浓度并且不会坏死的3D活性组织结构。另一项令人震惊的发现是,在活性肝细胞中的两大重要组成部分--脂类和肝糖原,在利用3D打印形成的成熟肝组织当中的存量并没有发生多少改变。而且在特异性染色细胞的比例方面,3D打印的肝组织与正常人体肝组织也十分相似。除此之外,为了试验3D打印的活性肝组织的毒性处理能力,研究人员们使用了相对没有太大毒性的药物进行了各种类型的毒性环境测试,并证明了3D打印的活性肝组织具有一定的毒性处理能力,这证明了3D打印的生物肝组织能够在临床毒性研究领域发挥重要价值。对于生物细胞3D打印的研究远不止如此,相信随着技术的不断进步,3D生物打印技术能够越来越体现出其巨大的潜力并逐渐开启未来的细胞组织生物学研究的大门。

(责任编辑:admin)