3D打印网-中国3D打印门户移动版

主页 > 3D打印案例 >

航空航天领域用增材制造金属材料的研究进展(2)


2.1.2 应用实例

       增材制造技术在飞机零件结构优化和缺陷修复方面具有一定优势。欧洲宇航防务集团公司将拓扑优化技术与增材制造技术相结合,为空客 A380 打印的不锈钢支架质量与传统铸件相比约减小了 40%,单架机年运营费等成本降低了数万美元[38]。北京航空材料研究院采用激光修复技术,对第三代战机、伊尔 76 飞机的超高强度钢起落架、不锈钢轴颈等承载件进行了修复,部分修复的零件已通过装机评审并被再次应用[39],修复的伊尔 76 飞机超高强度钢起落架状态良好。
2.2 增材制造镍基合金及其应用
       航空发动机的推重比和功率在不断提高,涡轮入口温度也随之升高,对高温合金叶片性能的要求也越来越高。目前,镍基高温合金的应用最为广泛,其在 650~1 000 ℃具有较高的强度、良好的抗氧化和抗燃气腐蚀性能等。典型的镍基高温合金有 IN625、IN718 等,两者用量占镍基高温合金总量的 83%,常用于航空发动机燃烧室、发动机尾喷管等零部件[40-41]。

2.2.1 微观组织与力学性能
镍基高温合金是以镍为主要成分(镍质量分数一般大于 50%)的高温合金,主要通过 Nb和 Mo 的固溶强化提高其力学性能,Ni 和 Cr 具有较好的耐蚀和抗氧化性能,Mo 具有优异的抗点蚀性能[42-43]。镍基高温合金基体为 γ 相、强化相为 γ′相,在常温和高温下均具有强化作用,被广泛应用于航空航天热端部件[44]。

采用选区激光熔炼(SLM)工艺制备镍基高温合金件的过程中,工艺参数会显著影响零件的力学性能[16]。SLM 成形镍基高温合金件通常需进行后处理(如热等静压处理、固溶处理、时效等),来改善其显微组织和力学性能[45]。表 3 归纳了 SLM 成形镍基高温合金经不同工艺热处理后的力学性能。IN718 合金是富含 Cr 和 Fe 的沉淀硬化镍基合金,SLM 成形 IN718 合金沉积态的屈服强度约为 580 MPa,时效后可提高至 1 000 MPa 以上。
增材制造 IN718 合金的热处理工艺通常包括析出时效、δ 相时效+析出时效、高温组织均匀化+δ 相时效+析出时效等[50-51]。析出时效处理时,时效温度较低不会使沉积态组织发生变化,仅促进 γ''相和 γ'相析出,也不能消除打印过程中形成的 Laves 相。Laves 相为有害相,会降低材料的力学性能[52]。因此,通常对增材制造 IN718 合金进行温度高于 970 ℃的均匀化处理,以消除 Laves 相。“δ 相时效+析出时效”处理可使晶界的 Laves 相溶解并转变为沿晶界析出的 δ 相。此外,δ 相会随“δ 相时效”时间的延长而长大,且亚稳态 γ''相会转变为δ 相(时效温度 650 ℃)。进行高温组织均匀化+δ 相时效+析出时效处理时,高温组织均匀化处理不仅影响 γ''相和 δ 相的析出行为,也影响材料的再结晶程度。固溶温度高于 1 180 ℃时,沉积态组织将发生完全再结晶,且随着均匀化温度的提高和时间的延长,Laves 相或碳化物完全溶解,γ''相尺寸增大[51,53]。可见,合适的热处理能促进 γ''和 γ'相重新析出,从而显著提高增材制造 IN718 合金的屈服强度。

IN718 合金增材制造过程中极高的温度梯度和极快的冷却速度会抑制 γ''和 γ'相析出,导致增材制造 IN718 合金的硬度和强度降低[48]。根据增材制造镍基高温合金的微观组织特点,通过开发新的热处理工艺,有望使其获得良好的综合力学性能[54]。沉积态增材制造镍基高温合金件的综合力学性能往往达不到锻造件的水平,且成形过程中易产生微裂纹等缺陷。通过添加合金元素(Y、Re 等[55-56])或陶瓷颗粒(TiB2、TiC、TiN 等[57-59])等对高温合金进行改性,可一定程度上提高其高温性能。

2.2.2 应用实例
镍基高温合金适合制备形状复杂且极难加工的结构件,如火箭推进器零件、助推器等。印度国防冶金研究实验室(Defence Metallurgical Research Laboratory, DMRL)采用增材制造技术制备了升级版燃料喷射器,其抗压、抗拉性能和硬度均优于采用传统工艺制造的燃料喷射器,具有强大的应用潜力[60]。美国马歇尔太空飞行中心(Marshall Space Flight Center, MSFC)成功制备了 IN625 合金整体推力室,该推力室内部有完整的通道结构,可用于腔室的通道冷却喷嘴[61]。换热器是航天设备长效稳定运行的关键部件,法国 AddUp、Sogeclair 和 Temisth公司采用增材制造技术成功制备了薄壁 IN718 合金换热器,其质量和性能与增材制造的铝制外壳相近[62]。

2.3 增材制造钛合金及其应用
钛合金具有较高的比强度、良好的韧性、耐腐蚀、耐热耐寒性等,是航空发动机用重要材料之一[6]。目前,增材制造的钛合金主要有 TC4、TA15、TC11、Ti55、Ti60、TiAl 等,主要应用于发动机叶片、机匣,飞机钣金件、梁、接头、大型壁板等。TC4 合金(Ti-6Al-4V)具有良好的综合性能,在航空航天领域的用量最大,使用温度一般在 400 ℃以下,能在 400 ℃以上使用的钛合金主要有 TA15、TC11、Ti-55 及 Ti60 等。

2.3.1 微观组织与力学性能
激光增材制造钛合金是极端非平衡凝固过程,其快速熔化和快速凝固完全偏离了常规工艺的平衡/近平衡凝固过程。激光成形钛合金的沉积态组织主要为柱状初生 β 相及细小的针状 α′马氏体,成品显微组织高度依赖沉积过程中的热循环和随后的热处理。通过控制固溶和时效温度、冷却速率等并结合适当的热变形加工,可获得传统钛合金的等轴、双态、魏氏或网状等典型组织。以 Ti-6Al-4V 合金为例,由于 SLM 成形过程的冷却速率极快,远高于发生马氏体相变的冷却速率,急速冷却时初生 β 相将发生无扩散相变,转变为非平衡针状马氏体(α'),其室温抗拉强度超过 1 200 MPa,但断后伸长率仅约为 8%(表 4)[63]。

在 SLM 的极端非平衡凝固条件下,钛合金往往会形成粗大的柱状晶组织,导致力学性能各向异性,使构件累积损伤失效[64-66]。为避免粗大柱状晶组织的不良影响,可向钛合金中添加 Cu、Ni 等合金元素[67-69]以及 ZrN、TiB2、ZrB2 等陶瓷颗粒[70-75],以促进等轴晶形成。研究表明,向纯钛中加入一定量的 Cu,在 SLM 成形的 Ti-Cu 合金中形成了细小的等轴晶粒[76]。该成分合金凝固过程中固液前沿的成分过冷区显著扩大,消除了增材制造温度梯度大的不良影响,限制晶粒长大的同时提高形核速率,促进精细等轴晶形成。在无后处理的情况下,制备的 Ti-Cu 合金与传统合金相比具有较高的屈服强度和断后伸长率(表 4)。笔者团队受其启发,向纯钛中加入微量 Ni,在 SLM 成形的 Ti-Ni 合金中产生了直径约 1.2 μm 的等轴晶[69]。通过进一步优化 SLM 工艺获得了具有细小等轴晶的纳米马氏体(α')组织,并避免了脆性 Ti2Ni 相的形成,该高强韧钛合金的强度和塑性均优于上述 Ti-Cu 合金(表 4)。可见,设计新合金成分扩大凝固过程中固液前沿的成分过冷区是使增材制造钛合金获得精细等轴晶的有效途径。

传统钛合金的激光增材成形性能较好,增材制造工艺较成熟。而增材制造技术固有的凝固特点导致的钛合金微观组织调控难题,仍需从粉体成分方面着手解决。钛合金增强增韧方法是 SLM 成形钛合金的研究重点。


2.3.2 应用实例
国内外增材制造钛合金已广泛应用于多种飞机的复杂构件及航空发动机零部件,具有显著的成本和效率优势。王华明团队致力于增材制造技术的研究,采用钛合金成功制造了国内尺寸最大、结构最复杂的飞机关键构件[2]。西北工业大学黄卫东团队采用激光增材制造技术成功制造了 C919 大飞机用 Ti-6Al-4V 合金翼肋上下缘条,其静载强度及疲劳性能达到了锻件水平[79]。中国航天科工 306 所将 SLM 技术与异种钛合金(TA15 与 Ti2AlNb)过渡复合技术相结合,采用 SLM 成形技术成功制造了航空发动机复合材料燃烧室,克服了传统铸件强度低、接口易断裂等问题,顺利通过了力-热联合试验[79]。意大利 Avio 公司采用电子束选区熔融成形技术成功制造了航空发动机钛合金低压涡轮叶片,800 ℃屈服强度达 480 MPa,具有良好的抗蠕变性能[80]。挪威 Norsk Titanium 公司开发了等离子电弧熔丝增材制造钛合金组件,通过了美国联邦航空局(Federal Aviation Administration, FAA)认证,已成功应用于波音787[79]。

2.4 增材制造铝合金及其应用
铝合金是航空航天领域常用的轻金属。激光增材制造铝合金有难度,这与其特殊的物理性质(密度低、激光吸收率低、热导率高及易氧化等)有关[81]。锻造铝合金凝固温度范围较大,快速凝固时产生的应力易导致开裂、变形[82]。铸造铝合金含有共晶元素(如 Si),凝固温度范围较小,因而热裂倾向小,成形性能好,因此铸造 Al-Si 系合金是研究最早且增材制造工艺最成熟的铝合金。目前,增材制造铝合金主要有 AlSi7Mg、AlSi10Mg、AlSi12 等,主要用于管路支架、壳体、框梁、网格结构、复杂管道、薄壁件等。

2.4.1 微观组织与力学性能
在 SLM 非平衡快速凝固条件下,铸造 Al-Si 系合金(如 AlSi12 合金)显微组织为微细的富 Al 胞结构,残余 Si 颗粒从晶界析出;热处理后,显微组织发生一定程度的粗化,Si组元从晶胞中继续析出并形成 Si 颗粒[83]。SLM 成形的 AlSi10Mg 合金显微组织及演变规律与 AlSi12 合金相似[84]。AlSi10Mg 合金在 SLM 成形过程中并不析出 Mg2Si 相[85],直接低温时效后强度显著提高(表 5)。

激光增材制造工艺参数(如激光光斑尺寸、激光功率、扫描速度、扫描间距、铺粉厚度等)、成形方向、成形件布局方式等均显著影响构件的成形质量、显微组织和力学性能。近年来,对 SLM 成形 AlSi10Mg 合金的工艺参数、显微组织和力学性能进行了系统研究,建立了成形工艺及热处理与显微组织和力学性能的相关性[86-90],发现沉积态 AlSi10Mg 合金具有较高的残余应力和显著的组织各向异性[91-95]。笔者团队进一步研究发现,沉积态 AlSi10Mg合金的拉伸性能各向异性主要与承载面熔池界面分布有关,承受载荷的熔池界面越少强度和塑性越好[96]。此外,热处理能有效降低或消除残余应力,弱化显微组织和力学性能的各向异性,但会造成组织粗化和强度降低(表 5)[97]。

由于锻造铝合金极易开裂,难以通过增材制造获得需要的显微组织和力学性能,迫切希望通过优化化学成分和设计来解决这一难题。研究发现,添加 Zr、Sc、Ti 等元素可显著降低锻造铝合金增材制造过程中的开裂敏感性,促进细小等轴晶形成,提升铝合金的强度和塑性[82,98-102]。此外,将陶瓷颗粒与铝合金粉末均匀混合后制备铝基复合材料也可获得良好的成形质量和细小的微观结构,并显著提高强度、硬度和耐磨性[103-107]。

目前,铝合金增材制造研究大多基于传统合金,新型铝合金开发也取得了一定进展[9,108]。虽然增材制造技术独特的快速熔化和快速凝固过程可获得异于传统工艺制备的材料的组织和均质化效果,但铝合金高裂纹倾向和柱状组织粗化的问题仍困扰和制约铝合金增材制造的研究与应用,完善增材制造铝合金的成分设计理论是亟待解决的问题。


2.4.2 应用实例
增材制造铝合金构件已在多种型号的飞机上应用。空客公司为实现减轻质量和缩短制造周期,采用增材制造技术将30个AlSi10Mg零件集成设计为1个零件,成功制造了A350 XWB型机的垂直尾翼支架,还采用 SLM 技术制造了 A320 客机的 Al-Mg-Sc 轻量化仿生机舱隔离结构,达到了减轻质量、降低成本的目的[112]。2016 年,英国克兰菲尔德大学采用电弧增材制造技术成功制造了长 6 m、质量 300 kg 的铝合金双面翼梁[113]。2020 年 4 月,美国 MELD Manufacturing Corporation 公司采用其专有的 MELD 技术(增材搅拌摩擦沉积)制备了直径 1.4 m 的铝合金部件,同年 8 月又成功制备了直径 3.05 m 的圆环状铝合金结构[114]。国内相关的增材制造研究机构和企业也一直致力于铝合金构件的制备。首都航天机械有限公司、北京航星机器制造公司、华中科技大学等分别开展了航天领域用铝合金支座、舱段、框梁、网格等构件的试制和应用,并取得了阶段性成果[115]。

3 结束语
      增材制造金属材料在航空航天领域具有广阔的应用场景。增材制造铁基合金、镍基合金、钛合金和铝合金是目前航空航天领域广泛应用的材料,用于卫星、火箭、飞机、武器装备等,推动了增材制造金属材料市场的快速扩展。然而,目前航空航天领域广泛应用的增材制造合金粉末主要基于传统块体材料成分,适用于增材制造技术的专用合金体系匮乏。亟须针对增材制造独特的高冷却速率、温度梯度及非平衡热循环等特点开发兼具良好成形性和力学性能的增材制造专用合金粉末。开发增材制造专用合金粉末将是航空航天用增材制造金属材料的重要研究方向。
       增材制造技术独特的快速熔化及快速凝固过程可获得异于采用传统工艺制备的材料的组织和均质化效果,但增材制造铁基合金、镍基合金、钛合金和铝合金往往存在开裂倾向大和形成柱状组织等问题,严重制约了增材制造技术的推广应用。通过添加合金元素或者陶瓷颗粒等对增材制造金属进行改性,有望改善成形性,获得精细显微组织。未来,为满足航空航天领域对在极其严苛环境中使用的增材制造金属构件的需求,应通过创新和发展铁基合金、镍基合金、钛合金和铝合金,并结合增材制造控形、控性技术,实现材料−结构−性能一体化增材制造技术的应用。

文章引用:孙暄,胡斌,熊智慧等.航空航天领域用增材制造金属材料的研究进展[J/OL].上海金属:1-15[2024-01-10].https://doi.org/10.19947/j.issn.1001-7208.2023.09.03.
(责任编辑:admin)